Prof : ELHOUICHET	Devoir de contrôle N°1	Mathématiques
Lycée F.B.Monastir		A-N : 2011-2012

EXERCICE N°1

Cocher la réponse exacte :

1) La forme algébrique du nombre complexe $(1+i)^2(2-3i)$ est :

a/ 6 - 4i

b/ 6+4i

c/-6 - 4i.

2) La forme exponentielle du nombre complexe : $-2(\cos \frac{\pi}{12} + i \sin \frac{\pi}{12})$

a/ $2e^{-i\frac{\pi}{12}}$

b/ $2e^{i\frac{\pi}{12}}$

c/ $2e^{-i\frac{\pi}{12}}$

3) Soit f une fonction vérifiant pour tout x > 1; f(x) > 1 + x alors :

a/ f n'admet pas une limite en + a

b/ $\lim_{x\to +\infty} f(x) = -\alpha$

 $c/\lim_{x\to +\infty} f(x) = +\alpha$

EXERCICE N°2

le plan complexe est muni d'un repère orthonormé direct (o, \vec{u} , \vec{v}) d'unité graphique 0,5 cm

Soit les points A, B, C et D d'affixes respectives : $z_A = 8$, $z_B = 8i$, $z_C = 8 \left(\frac{1}{2} - i \frac{\sqrt{3}}{2}\right)$

Et
$$z_D = 8i e^{\frac{i2\pi}{s}}$$

1) exponentielle.

- Ecrire Z_C et Z_D sous forme
- 2) Montrer que les points A, B, C et D sont situés sur le même cercle de centre O dont on Précisera le rayon.
- 3) Tracer le cercle ζ et placer les points A, B, C et D.
- 4) a) on note Z_1 et Z_2 les affixes respectives des vecteurs \overrightarrow{AC} et \overrightarrow{BD} . Montrer que $Z_2 = Z_1\sqrt{3}$
 - b) on note Z_3 et Z_4 les affixes respectives des vecteurs \overrightarrow{AB} et \overrightarrow{DC} . Calculer $|Z_3|$ et $|Z_4|$.
 - c) Montrer que le quadrilatère ABCD est un trapèze isocèle.

EXERCICE N°3

Le plan complexe est muni d'un repère orthonormé direct (O, \vec{u}, \vec{v})

Soient
$$z_A = -2i$$
 , $z_B = -i$, $z_C = i$, $M(z)$ et $M'(z')$ tell que $z' = \frac{iz-2}{z+i}$ ($z \neq -i$)

- 1) Montrer que z' est imaginaire $\Leftrightarrow z + \overline{z} = 0$.
- 2) En déduire l'ensemble Δ des points M tel que z' soit imaginaire
- 3) a)Montrer que $|z'| = \frac{AM}{BM}$.
 - b) En déduire l'ensemble du point M' lorsque M décrit la médiatrice de [AB]
- 4) a) Calculer (z+i).(z'-i) Interpréter géométriquement $|(z+i)| \times |(z'-i)|$
 - b) Déterminer l'ensemble ζ 'des points M' lorsque M décrit le cercle $\zeta_{(B,2)}$

EXERCICE N°4

- 1) Soit la fonction f définie sur]- ∞ , 0[par f(x) = 1 + x^3 + x sin($\frac{1}{x}$)
- a) Montrer que pour tout $x \in]-\infty, 0[$ $,1+x(x^2+1) \le f(x) \le 1+x(x^2-1)$
- b) Déterminer les limites de f en ∞ et à gauche en 0.
- 2) Soit g la fonction définie sur IR par :

$$g(x) = \begin{cases} f(x)si \ x < 0 \\ \sqrt{1 + x^2} - 2x \ si \ x \ge 0 \end{cases}$$
 et (C) sa courbe dans un repère (O, \vec{i} , \vec{j})

- a) Montrer que g est continue en 0.
- b) Montrer que $\lim_{x\to -\infty} \frac{g(x)}{x} = +\infty$. Interpréter graphiquement ce résultat.
- c)Déterminer $\lim_{x\to +\infty} g(x)$ et $\lim_{x\to +\infty} (g(x)+x)$. Interpréter graphiquement ce résultat.
- 3) Montrer que l'équation g(x) = 0 admet une unique solution $\alpha \in \left[\frac{1}{2}, 1\right]$.
- 4) Calculer $\lim_{x\to \frac{\pi+}{2}} g(tanx)$